Modulation and Amplitude Equations on Bounded Domains for Nonlinear SPDEs Driven by Cylindrical $\alpha$-stable Lévy Processes

نویسندگان

چکیده

In the present work, we establish approximation via modulation or amplitude equations of nonlinear stochastic partial differential equation (SPDE) driven by cylindrical $\alpha$-stable Lévy processes. We study SPDEs with a cubic nonlinearity, where deterministic is close to change stability trivial solution. The natural separation time scales this bifurcation allows us obtain an describing essential dynamics bifurcating pattern, thus reducing original infinite dimensional simpler finite effective dynamics. presence multiplicative stable noise that preserves constant solution impact on approximation. contrast Gaussian noise, due averaging effects nondominant patterns are uniformly small in time, large jumps might lead error terms, and new estimates needed take into account.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural properties of semilinear SPDEs driven by cylindrical stable processes

Abstract: We consider a class of semilinear stochastic evolution equations driven by an additive cylindrical stable noise. We investigate structural properties of the solutions like Markov, irreducibility, stochastic continuity, Feller and strong Feller properties, and study integrability of trajectories. The obtained results can be applied to semilinear stochastic heat equations with Dirichlet...

متن کامل

Fractional transport equations for Lévy stable processes.

The influence functional method of Feynman and Vernon is used to obtain a quantum master equation for a system subjected to a Lévy stable random force. The corresponding classical transport equations for the Wigner function are then derived, both in the limits of weak and strong friction. These are fractional extensions of the Klein-Kramers and the Smoluchowski equations. It is shown that the f...

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

On One-dimensional Stochastic Equations Driven by Symmetric Stable Processes

We study stochastic equations Xt = x0 + ∫ t 0 b(u,Xu−) dZu, where Z is an one-dimensional symmetric stable process of index α with 0 < α ≤ 2, b : [0,∞) × IR → IR is a measurable diffusion coefficient, and x0 ∈ IR is the initial value. We give sufficient conditions for the existence of weak solutions. Our main results generalize results of P. A. Zanzotto [18] who dealt with homogeneous diffusion...

متن کامل

Amplitude Equations for Spdes: Approximate Centre Manifolds and Invariant Measures

We review recent results on the approximation of transient dynamics of SPDEs by amplitude equations. As an application we derive the flow along an approximate centre manifold, and we study the dynamics of random fixed points. To discuss the long-time behaviour we give an approximation result for invariant measures.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Siam Journal on Applied Dynamical Systems

سال: 2022

ISSN: ['1536-0040']

DOI: https://doi.org/10.1137/21m1431333